log_configs()
Python package: neptune-scale
Logs the specified metadata to a Neptune run.
You can log configurations or other single values. Pass the data as a dataclass or a mapping-like object, where:
- keys are strings specifying the path to the metadata in the run structure.
- values are the configurations or other single values to log.
For example, {"parameters/learning_rate": 0.001}
. In the attribute path, each forward slash /
nests the attribute under a namespace. Use namespaces to structure the metadata into meaningful categories.
Parameters
Examples
Create a run and log metadata:
from neptune_scale import Run
if __name__ == "__main__":
run = Run(experiment_name=...)
run.log_configs(
{
"parameters/learning_rate": 0.001,
"parameters/batch_size": 64,
},
)
Handle nested structures and type casting:
data = {
"metrics": {
"token_count": 76420,
"agg": {
"loss": None,
"acc": None,
}
},
"some_list": [1, "test", None],
}
if __name__ == "__main__":
run = Run(experiment_name=...)
run.log_configs(
data=data,
flatten=True,
cast_unsupported=True,
)