fetch_series()
Python package: neptune-query
Fetches a table of series values per step, for non-numerical series attributes.
To narrow the results, define filters for experiments to search or attributes to include.
Supported types:
Parameters
Returns
pandas.DataFrame – A table of series values per step for non-numerical series. The DataFrame has a MultiIndex with:
- Index:
["experiment", "step"]for experiments or["run", "step"]for runs - Columns:
"value"– File objects, strings, or histograms"absolute_time"if theinclude_timeargument is set to"absolute"
Raises
AttributeTypeInferenceError– If the attribute type wasn't specified in a filter passed to theexperimentsargument, and the attribute has multiple types across the project's experiments.ConflictingAttributeTypes– If there are conflicting attribute types under the same path and thetype_suffix_in_column_namesargument is set toFalse.
Example
Fetch file series of two specific experiments from step 1 to 3 and include the absolute timestamp:
import neptune_query as nq
nq.fetch_series(
experiments=["seabird-4", "seabird-5"],
attributes=r"^predictions/",
step_range=(1.0, 3.0),
include_time="absolute",
)
Sample output
predictions
absolute_time value
experiment step
seabird-4 1.0 2025-08-29 09:18:27.946000+00:00 File(size=24.89 KB, mime_type=image/png)
2.0 2025-08-29 09:18:29.949000+00:00 File(size=26.66 KB, mime_type=image/png)
3.0 2025-08-29 09:19:01.952000+00:00 File(size=6.89 KB, mime_type=image/png)
seabird-5 1.0 2025-08-29 09:21:07.946000+00:00 File(size=23.66 KB, mime_type=image/png)
2.0 2025-08-29 09:22:25.949000+00:00 File(size=25.43 KB, mime_type=image/png)
3.0 2025-08-29 09:24:27.952000+00:00 File(size=6.58 KB, mime_type=image/png)
Fetch from runs
To target individual runs by ID instead of experiment name, import the runs API:
import neptune_query.runs as nq_runs
Then call the corresponding querying method and replace the experiments parameter with runs:
nq_runs.fetch_series(
runs=["prompt-wolf-20250605132116671-2g2r1"], # run ID
attributes=r"^messages/",
step_range=(1000.0, None),
)