Save a SageMaker model to Neptune#
This guide uses code snippets from the official Amazon SageMaker Examples repository.1
Let's say you have trained the knn
model in SageMaker as below:
# set up the estimator
knn = sagemaker.estimator.Estimator(
get_image_uri(boto3.Session().region_name, "knn"),
get_execution_role(),
instance_count=1,
instance_type="ml.m5.large",
output_path=output_path,
sagemaker_session=sagemaker.Session(),
)
knn.set_hyperparameters(**hyperparams)
# train a model. fit_input contains the locations of the train and test data
fit_input = {"train": s3_train_data}
if s3_test_data is not None:
fit_input["test"] = s3_test_data
knn.fit(fit_input)
To store the model in Neptune, create a run:
Then, save all the relevant model artifacts. For example:
run["model"].track_files(knn.model_data) # tar.gz with the trained model
run["hyperparameters"] = knn.hyperparameters()
run["training_image_uri"] = knn.training_image_uri()
Related
- How to use Neptune in SageMaker training jobs – you can save the outputs as described on this page.
- Models in Neptune
-
In particular, the notebook showing how to train k-nearest neighbors algorithm in SageMaker . ↩