Query single attribute values
Python package: neptune-query
To fetch configs, scores, or other single values from experiments, use the fetch_experiments_table()
function.
The returned data frame mimics the runs table of the web app.
If series attributes are included, only the last logged value is returned.
loss_and_config_df = nq.fetch_experiments_table(
experiments=["kittiwake_week-1", "kittiwake_week-2", "kittiwake_week-3"],
attributes=r"loss | config",
)
Sample output
loss config/n_layer config/learning_rate
experiment
kittiwake_week-1 0.22 12 0.01
kittiwake_week-2 0.28 12 0.02
kittiwake_week-3 0.24 12 0.01
To specify experiments or attributes to include, pass a list of exact names or a regular expression to the experiments
or attributes
argument.
To provide more complex criteria or join multiple conditions together, use filter objects. For a guide, see Define filters.
Target runs instead of experiments
To specify runs by ID instead of experiments by name, use the fetch_runs_table()
function from the runs
module:
import neptune_query.runs as nq_runs
runs_df = nq_runs.fetch_runs_table(
runs=["glowing-database-60704895-9ps29"], # list of run IDs, or regex to match
attributes=r"loss | config",
)
Sample output
loss config/n_layer config/learning_rate
run
glowing-database-60704895-9ps29 0.02 12 0.01